Best Constants for Two Non-convolution Inequalities

نویسندگان

  • Michael Christ
  • Loukas Grafakos
چکیده

The norm of the operator which averages |f | in L p (R n) over balls of radius δ|x| centered at either 0 or x is obtained as a function of n, p and δ. Both inequalities proved are n-dimensional analogues of a classical inequality of Hardy in R 1. Finally, a lower bound for the operator norm of the Hardy-Littlewood maximal function on L p (R n) is given. A classical result of Hardy [HLP] states that if f is in L p (R 1) for p > 1, then (0.1) ∞ 0 1 x x 0 |f (t)| dt p dx 1/p ≤ p p − 1 ∞ 0 |f (t)| p dt 1/p and the constant p/(p − 1) is the best possible. By considering two-sided averages of f instead of one-sided, (0.1) can be equivalently formulated as: (0.2) ∞ −∞ 1 2|x| |x| −|x| |f (t)| dt p dx 1/p ≤ p p − 1 ∞ −∞ |f (t)| p dt 1/p. We denote by D(a, R) the ball of radius R in R n centered at a. Let (T f)(x) be the average of |f | ∈ L p (R n) over the ball D(0, |x|). The analogue of (0.2) for R

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Khinchine Type Inequalities with Optimal Constants via Ultra Log-concavity

We derive Khinchine type inequalities for even moments with optimal constants from the result of Walkup ([15]) which states that the class of log-concave sequences is closed under the binomial convolution. log-concavity and ultra log-concavity and Khinchine inequality and factorial moments

متن کامل

. O A ] 1 4 M ay 2 00 5 On the best constants in some non - commutative martingale inequalities

We determine the optimal orders for the best constants in the non-commutative Burkholder-Gundy, Doob and Stein inequalities obtained recently in the non-commutative martingale theory. AMS Classification: 46L53, 46L51

متن کامل

On Classical Analogues of Free Entropy Dimension

Abstract. We define a classical probability analog of Voiculescu’s free entropy dimension that we shall call the classical probability entropy dimension. We show that the classical probability entropy dimension is related with diverse other notions of dimension. First, it equals the fractal dimension. Second, if one extends Bochner’s inequalities to a measure by requiring that microstates aroun...

متن کامل

Convolution Inequalities for the Boltzmann Collision Operator

In this paper we study the integrability properties of a general version of the Boltzmann collision operator that includes inelastic interactions between particles. We prove a Young’s inequality for variable hard potentials, a Hardy-Littlewood-Sobolev inequality for soft potentials, and estimates with Maxwellian weights for variable hard potentials. In addition we obtain sharp constants for Max...

متن کامل

Pitt’s Inequality with Sharp Convolution Estimates

WILLIAM BECKNER Abstract. Sharp Lp extensions of Pitt’s inequality expressed as a weighted Sobolev inequality are obtained using convolution estimates and Stein-Weiss potentials. Optimal constants are obtained for the full Stein-Weiss potential as a map from Lp to itself which in turn yield semi-classical Rellich inequalities on Rn. Additional results are obtained for Stein-Weiss potentials wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995